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Abstract

It is a well know result that roots of a polynomial depend continuously on its coeffi-
cients. Here we review this basic result and produce a proof via the use of Rouché’s
Theorem. We also provide a simple result regarding real simple roots of polynomials
with real coefficients.

1 Introduction

The basic result we would like to discuss here is that of continuous dependence of of
roots of a polynomial on its coefficients. First, we discuss the requisite complex analysis
basics. Next, using Rouché’s Theorem, we provide a proof of the Fundamental Theorem
of Algebra and then the result on continuous dependence of polynomials on their coef-
ficients. We also briefly discuss simple real roots of polynomials with real coefficients
at the end of this note, where we provide a simple proof of the following result: in addi-
tion to continuous dependence, real simple roots of a polynomials with real coefficients
remain real under sufficiently small (real) perturbation to the coefficients.

2 Zeros of analytic functions

Recall that a function f : C → C is called analytic in an open set U ⊂ C if it has
a derivative at each point in U . Let us begin by considering an analytic function f

defined on a simply connected domain U ⊆ C. Let C be a simple closed contour in
U . We denote by Nz(f ;C) the number of zeros of f in the interior of C. The following
basic result [1, 2] from complex analysis, which is a simple application of the Residue
Theorem, allows one to compute Nz(f ;C).

Theorem 2.1. Let f be an analytic function on a simply connected domain U ⊆ C. Let
C be a positively oriented simple closed contour in U such that f(z) 6= 0 on C. Then, f
has finitely many zeros in the interior of C given by,

Nz(f ;C) =
1

2πi

∫
C

f ′(z)

f(z)
dz.

The following result, due to Rouché, is central to the discussion in this note. The
presented proof follows that of [1] closely.

Theorem 2.2 (Rouché). Let f and g be analytic in a simply connected domain U . Let
C be a simple closed contour in U . If |f(z)| > |g(z)| for every z on C, then the functions
f(z) and f(z) + g(z) have the same number of zeros, counting multiplicities, inside C.
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Proof. We begin by defining the following function,

Ψ(t) =
1

2πi

∫
C

f ′(z) + tg′(z)

f(z) + tg(z)
dz, t ∈ [0, 1].

Note that by Theorem 2.1, Nz(f ;C) = Ψ(0) and Nz(f + g;C) = Ψ(1). First, let us note
that the denominator of the the integrand in the definition of Ψ is never zero. This is
seen by noting that for any z ∈ C,

|f(z) + tg(z)| ≥ ||f(z)| − t|g(z)|| ≥ |f(z)| − |g(z)| > 0,

It is also straightforward to see that the function Ψ is continuous on [0, 1]. Moreover, by
Theorem 2.1, Ψ is integer valued. Therefore, it must be the case that Ψ is constant on
[0, 1]. In particular, it follows that

Nz(f ;C) = Ψ(0) = Ψ(1) = Nz(f + g;C).

3 Roots of polynomials

3.1 Fundamental Theorem of Algebra

The following proof of the Fundamental Theorem of Algebra uses Rouché’s Theorem.
The short argument for this fundamental result shows the power of Rouché’s theorem.
The proof presented here is standard and follows that of [4] closely. In the following,
when discussing a polynomial of degree n,

p(z) =

n∑
k=0

akz
k, ak ∈ C,

we lose no generality if we consider the case when an = 1; that is, we consider,

p(z) = zn +

n−1∑
k=0

akz
k, ak ∈ C. (3.1)

Theorem 3.1 (Fundamental Theorem of Algebra). Let p(z) be a polynomial of degree
n, n ≥ 1, with complex coefficients as in (3.1). Then, p has exactly n zeros counting
multiplicities.

Proof. Let f(z) = zn, and note that trivially f has n zeroes (counting multiplicity). Next,
define g(z) =

∑n−1
k=0 akz

k, where ak, k = 0, . . . , n− 1, are the coefficients of p as in (3.1).
Choose R > 0 such that R > 1 +

∑n−1
k=0 |ak|, and let CR be the circle {z : |z| = R}. For

each z ∈ CR, we have,

|g(z)| = |
n−1∑
k=0

akz
k| ≤

n−1∑
k=0

|ak||zk| =
n−1∑
k=0

|ak|Rk <

n−1∑
k=0

|ak|Rn−1 < RRn−1 = Rn = |z|n = |f(z)|.

That is |f(z)| > |g(z)| on the circle CR. Recalling that f has n zeros, it follows by
Rouché’s Theorem that f(z) + g(z) = p(z) also has n zeros inside CR. Since R can be
made arbitrarily large, it follows that p(z) has exactly n zeros.

3.2 Continuous dependence of roots of polynomials on coefficients

We know by the Fundamental Theorem of Algebra that a polynomial of degree n has
n (complex) roots. Theorem 3.2 below, which is the main point of the discussion in this
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note, shows that the roots of a polynomial depend continuously to its coefficients; its
proof is an adaptation of the argument presented in [3, p. 43].

In the following we denote by B(z0, ε) the open ball of radius ε centered at z0 ∈ C:

B(z0, ε) = {z ∈ C : |z − z0| < ε}.

Theorem 3.2. Let p(z) be a polynomial of degree n, n ≥ 1, as in (3.1), with m distinct
roots {λ1, . . . , λm}, 1 ≤ m ≤ n, having multiplicities α1, . . . , αm, Then, for any ε > 0 such
that the closed balls B(λj , ε), j = 1, . . . ,m are disjoint, there exists a δ = δ(ε) > 0 such
that any degree n polynomial,

q(z) = zn +

n−1∑
k=0

bkz
k,

with |ak − bk| < δ, k = 0, . . . , n − 1, has exactly αj roots (counting multiplicities) in
B(λj , ε), j = 1, . . . ,m.

Proof. Let ε be as in the statement of the theorem, and define the circles

Cj = {z : |z − λj | = ε}, j = 1, . . . ,m;

recall that by the assumption on ε, the circles Cj are disjoint. Let

νj = min
z∈Cj

|p(z)|, j = 1, . . . ,m,

where we know the minimums νj are attained because for each j, we have a continuous
function on a compact set. Moreover, νj > 0, because the zeros of p lie at the centers of
the disjoint circles Cj , j = 1, . . . ,m. Next, let ρj , j = 1, . . . ,m be defined as follows,

ρj = max
z∈Cj

{1 +

n−1∑
k=1

|zk|}.

Choose {bk}n−10 such that |ak − bk| < δ with δ > 0 taken such that,

δρj < νj , j = 1, . . . ,m.

Then, we have for z ∈ Cj ,

|q(z)− p(z)| =
∣∣ n−1∑
k=0

(bk − ak)zk
∣∣

≤
n−1∑
k=0

|bk − ak||zk|

< δ

n−1∑
k=0

|zk| ≤ δρj < νj ≤ |p(z)|.

That is, for j = 1, . . . ,m,
|p(z)| > |q(z)− p(z)|, on Cj .

Therefore, it follows by Rouché’s Theorem that p(z) and (q(z)− p(z)) + p(z) = q(z) have
the same number of zeros, namely αj , (counting multiplicities) in the interior of Cj , i.e.
B(λj , ε), for each j = 1, . . . ,m.
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Let p(z) be a polynomial of degree n, n ≥ 1, as in (3.1), with m distinct roots
{λ1, . . . , λm}, 1 ≤ m ≤ n. Define R0(p) as follows,

R0(p) =

{
1
2 , if m = 1,
1
2 min |λi − λj |, 1 ≤ i < j ≤ m, if m > 1.

The following is an immediate corollary of Theorem 3.2:

Corollary 3.3. Let p(z) be a polynomial of degree n, n ≥ 1, as in (3.1), with roots
{λ1, . . . , λn}. Then, for any ε with 0 < ε < R0(p), there exists δ = δ(ε) > 0 such that the
roots {µ1, . . . , µn} of any degree n polynomial,

q(z) = zn +

n−1∑
k=0

bkz
k,

with |ak − bk| < δ, k = 0, . . . , n− 1, can be ordered such that the following holds,

|λi − µi| < ε, i = 1, . . . , n.

Remark 3.4. Let A be an n× n complex matrix. Recall that eigenvalues of A are roots
of its characteristic polynomial,

p(λ) = det(A− λI).

Now the coefficients of the characteristic polynomial p depend continuously on the en-
tries of A. Therefore, it follows by Theorem 3.2 (or Corollary 3.3) that the eigenvalues
of A depend continuously to the entries of A. In another words, if {An} is a sequence
of matrices such that An → A, then for any ε > 0, there exist N = N(ε) such that for
n ≥ N , the eigenvalues of An lie in balls of radius ε centered at the eigenvalues of A.
Moreover, in the case ε < R0(p), i.e.

ε <
1

2
min |µi − µj |, 1 ≤ i < j ≤ m

where µj , j = 1, . . . ,m are the distinct eigenvalues of A, each having multiplicity αj , we
have the more precise result that there exists an N = N(ε) such that for n ≥ N(ε), An

has αj eigenvalues in B(µj , ε), j = 1, . . . ,m.

3.3 Real roots of polynomials with real coefficients

Here we have a closer look at the real roots of a polynomial with real coefficients.
The following result shows that if a polynomial p (with real coefficients) has a real root
λ of multiplicity one, then any polynomial q obtained by small (real) perturbations to
the coefficients of p will also have a real root in a neighborhood of λ. That is, not only
the root λ depends continuously on coefficients of p, but also it remains real, under
sufficiently small perturbations of coefficients of p. This elementary result, which is
useful in applications, is not, to our knowledge, mentioned in the literature.

Theorem 3.5. Let p(z) be a polynomial of degree n, n ≥ 1, as in (3.1) with real co-
efficients. Suppose λ is a real root of p with multiplicity one. Then, for any ε with
0 < ε < R0(p), there exists δ = δ(ε) > 0 such that any degree n polynomial,

q(z) = zn +

n−1∑
k=0

bkz
k,

with |ak−bk| < δ, k = 0, . . . , n−1, and real coefficients bk has a real root µ of multiplicity
one with |λ− µ| < ε.
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Proof. By Theorem 3.2, we know that there exits a δ = δ(ε) > 0 such that any polynomial
q with |ak − bk| < δ, k = 0, . . . , n− 1, has exactly one root µ in B(λ, ε). In particular, this
holds for the case that bk are real with bk ∈ (ak − δ, ak + δ), k = 0, . . . , n − 1. Assume
q is such a polynomial (with real coefficients), and suppose to the contrary that µ has
non-zero imaginary part, µ = x+ iy, with y 6= 0. First we note that µ̄ = x− iy must also
be a root of p, because q(µ̄) = q(µ) = 0, where the first equality holds since q has real
coefficients. Moreover, it is simple to note that µ̄ is also in B(λ, ε), as

|λ− µ̄| =
√

(λ− x)2 + (−y)2 =
√

(λ− x)2 + y2 = |λ− µ| < ε.

We have thus reached a contradiction as q must have exactly one root in B(λ, ε). There-
fore, it follows that µ ∈ R also.

Remark 3.6. The implication of the above result regarding the eigenvalues of a matrix
is of importance also. Let A = A(t) be a continuous function from R to the set of n× n
matrices with real entries, A : R → Rn×n. Suppose A(0) has a simple eigenvalue (an
eigenvalue of multiplicity one) which is real; let us denote this eigenvalue by λ(0). Then,
the above Theorem says that for t sufficiently small, A(t) has a real simple eigenvalue
λ(t), in a neighborhood of λ(0), and as t→ 0, λ(t)→ λ(0).
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